
Graphic Elements copyright ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) Page 1
An Overview of the Graphic Elements System

The Graphic Elements system is based on the interaction
between an application program (or other enclosing software
entity, such as a pane or view in a class library system), a display
controller which deals with groups of graphical entities
(GEWorlds or worlds), and a number of graphical entities
(Graphic Elements or elements). The relationships between the
parts of the Graphic Elements system are shown in Diagram 1.

.

GRF1 GRF2 GRF3 GRF4

Program
Module1

Graphics Creation

Names:
GRF1
GRF2
GRF3

Program
Module2

Graphics Creation

GRF4
Names:

APPLICATION
PROGRAM

CONTROL

Data

Optional
Procs

Render

{ }QuickDraw or
other “Built-In"

Graphics
Window

on Screen

Data

Optional
Procs

Render
Data

Optional
Procs

Render
Data

Optional
Procs

Render

CENTRAL
DISPLAY

CONTROLLER

Generate Frames
Handle Mouse

Diagram 1. The relationships between Application Program,
Display Controller, and Graphic Elements.

The application program calls the display controller to create
new Graphic Elements and GEWorlds to store them in, to
generate updated images and display them on the screen, and to

Graphic Elements copyright ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) Page 2
give the elements in a world the opportunity to respond to user
actions. Through the display controller, the

Graphic Elements copyright ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) Page 3
application can also access individual Graphic Elements and
manipulate them explicitly

The display controller manages the memory allocated for
Graphic Elements and offscreen work areas, and provides access
to the data structures of individual elements. It calls individual
Graphic Elements to perform their periodic functions or to
interact with each other or the user, calls individual elements to
render themselves as needed, and “projects” updated frames
onscreen as demanded by the application program.

Each related group of Graphic Elements handled by the display
controller is one GEWorld. A Graphic Elements world is a
rectangle, within a window, for which the Graphic Elements
system handles all graphic operations.

One world may contain any number of Graphic Elements (limited
only by memory and processor speed), which may lie on up to
32,767 “planes” within this world. Elements on higher-
numbered planes are drawn “in front of” elements on lower-
numbered planes.

Each Graphic Element in a GEWorld is, at a minimum,
responsible for rendering itself, on demand from the display
controller, into a graphical environment provided by the display
controller. Optionally, it may do any or all of the following:
1) Change its appearance periodically, for example by moving or
changing frames; 2) interact with other Graphic Elements
(collision); and 3) interact with the user (by tracking mouse
movements and executing an action procedure in response to the
user releasing the mouse button).

Anything that can be drawn on the screen can be a Graphic
Element. Each Graphic Element is identified by a unique 4-
character “name.”

Graphic Elements copyright ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) Page 4
Display Controller Interactions

The display controller interacts with the display “hardware”
(actually, with the combination of hardware and system-level
graphics facilities), with the application program, and with the
individual Graphic Elements. These interactions are shown in
Diagram 2.

Application Interactions Display Interactions

Graphic Element Interactions

Data Management:
• Allocate GEWorld memory
• Provide “keyword”
 access to Graphic Elements

Graphics Control:
• Generate new frames
• Interact with mouse clicks

Data Interaction:

Hardware Interaction:

• Manage list of changes which
 need to be made to screen
 image at any moment

• Use system services, e.g.
 QuickDraw, to draw screen

Task Management:
• Call autochange procs
• Call collision procs
• Call tracking procs
• Call rendering procs
 as required

Graphic Elements Services:
• Position control — Move, MoveTo,
 change plane
• Visibility control (show/hide)
• Access to data

DISPLAY CONTROLLER

Diagram 2. Interactions of Display Controller with display
hardware, application program, and individual Graphic

Elements.

The application program deals directly with the display
controller to create and maintain Graphic Elements worlds. The
bulk of this interaction takes place at a few well-defined times.
The application creates GEWorlds and installs them into a
window. It may activate and deactivate them, and set their
minimum update intervals. Through the display controller, it
gives them regular opportunities to update their appearance and
to handle user actions within their screen areas. The application

Graphic Elements copyright ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) Page 5
may also call the display controller to gain access to the data
record of any individual Graphic Element, and may manipulate
elements explicitly at any time. Finally, the application program
uses the display controller to dispose of GEworlds and the
elements they contain when it has finished using them.

Graphic Elements copyright ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) Page 6
The display controller handles all interactions with the graphics
hardware. It maintains a list of all changes which have been
made since it generated the last frame, and calls the Graphic
Elements affected by these changes to draw the required
portions of themselves. The display controller then uses services
provided by the operating system to transfer the results of these
changes to the computer screen.

The display controller interacts with some or all of the individual
Graphic Elements in a GEWorld during the generation of each
graphics frame. Each element may have an “autochange”
procedure, which is called periodically by the display controller
to give that element an opportunity to move, change frames, or
perform any other time-based task. Each element may also have
a collision procedure, called by the display controller whenever
that element comes in contact with an element in its “collision
plane.” Each element must have a rendering procedure, which
draws some or all of the element as required by the display
controller. Finally, the display controller acts as an intermediary
in handling user interactions: when the application passes a
mouseDown event to the display controller, it finds the Graphic
Element which handles events in that area of the screen, and
passes the event along to that element's mouse-tracking
procedure.

The display controller provides the same services to individual
Graphic Elements that it provides to the application program.
Individual elements call the display controller to change their
position, their plane, or their visibility. They may also call the
display controller to gain access to their own data records or
those of other Graphic Elements.

Graphic Elements copyright ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) Page 7
Graphic Element Interactions

Every interaction in the Graphic Elements system results in an
action by, or on, an individual Graphic Element. Graphic
Elements are “smart” graphical objects which may change their
appearance, position, or other attributes in response to any, all,
or none of three kinds of external events. These events include:
1) the passage of time, 2) collision with another Graphic
Element, and 3) being “clicked” on by the user. All of these
events are detected by the display controller and passed on to
the appropriate Graphic Element.

Offscreen
Source
Graphic

Exists if element
is based on a bitmap

Graphic's Data Record

Rendering Procedure

Bit-copy
Procedure

Draws graphic on
commands from
Display Controller

Periodic Change
Procedure
Called at regular
intervals. Can move,
change frames, etc.

Collision Procedure
Called when element
touches another element

Called when user presses
mouse button in element

Interact Procedure
Action
Procedure

Subsidiar y
Element

Graphic Elements copyright ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) Page 8
Diagram 3. An individual Graphic Element. Required

components
are outlined in bold.

Graphic Elements copyright ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) Page 9

As Diagram 3 above shows, a Graphic Element has only two
essential components: a data record, and a rendering procedure.
Its data record includes all the information needed by the display
controller to access and manipulate it. This data record contains
the element's identification (a four-character “name” used to
gain access to the element), its location (a rectangle in the
coordinates of its GEWorld), and its plane (a number between 0
and 32,767 representing its “height” above the background),
along with other information. An element's data record may also
include pointers to “master” and “slave” Graphic Elements. A
“slave” element automatically maintains its horizontal and
vertical distance from its “master” element. Since this “slave”
can also have a “slave” element, the application program can
easily construct “chains” of graphics that move together.

A Graphic Element's rendering procedure is a procedure which is
capable of drawing all or part of the element at a location
specified by the display controller, into a graphical environment
provided by the display controller. This rendering procedure
may use any appropriate method to do its drawing. In many
cases, the rendering operation will involve copying a pixel array
from one area of memory to another. A Graphic Element may
optionally include a specialized routine to perform this copying.

The real flexibility and utility of Graphic Elements derive from
their optional components.

Each Graphic Element may have an autochange procedure, in
conjunction with a change interval. This procedure will be called
by the display controller, at appropriate intervals, during frame-
generation cycles for the world containing the element. It can
change the element's appearance and position, or the
appearance and position of any other element, as desired.

Each Graphic Element may have a collision procedure, together
with a collision plane. The display controller will call this
procedure any time the element comes in contact with another
Graphic Element on its collision plane.

Finally, each Graphic Element may have an interaction

Graphic Elements copyright ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) Page
10
procedure, called by the display controller whenever the user
presses the mouse button while the cursor is within the screen
area of that element. This interaction procedure will normally
track the user's actions with the mouse, and may call an optional
action procedure, for example as the user moves the mouse or
when the mouse button is released within its area.

Graphic Elements copyright ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) Page
11
Graphic Elements—Method of Use

The Graphic Elements system is designed to be an open system.
It is as free as possible of all artificial restrictions on data access
and sequence of events. Thus the following constitutes only a
recommendation, a structured framework for using Graphic
Elements which has been found to be convenient, easy to
understand and maintain, and portable. Note that the term
“application program,” as used in this document, also includes
such software entities as the panes and views of various class
libraries. In general, it denotes any software module which
creates, uses, and disposes of Graphic Elements worlds.

First, divide the Graphic Elements to be used into “scenes,”
groups of related or interacting elements. For example, all
components of the background could be placed into one scene.

Each scene should include all of the “optional” procedures for
elements within that scene, for example autochange procedures
and collision procedures. Each scene should also include a
function to intialize all the scene's elements by creating them,
installing their autochange and collision procedures, installing
their subsidiary elements as required, etc. This function is called
from the application program, and should return either a
Boolean or an error code so that the application can tell whether
the scene has been successfully initialized.

During its own initialization phase, the application program
creates a window, installs a GEWorld of the appropriate size in it,
and calls each of the scene initialization functions. If all the
initialization functions execute without errors, the application
activates the GEWorld.

From this point on, the Graphic Elements system is almost
automatic. Once each time through its main event loop, the
application program calls the display controller to generate a
new frame if required. When the application receives a
mouseDown event in the area covered by the GEWorld, it passes
the event to the display controller for eventual action by one of
the Graphic Elements in that world.

Graphic Elements copyright ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) Page
12

This same basic procedure may be replicated as necessary for
software systems which require multiple windows and/or
multiple Graphic Elements worlds.

